5 resultados para Brightness Temperature Difference (BTD)

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, in a similar manner to FBC boilers, but also show a decrease in wastage at low temperatures (e.g. 200°C) which has not been detected in boilers. It has been suggested that this difference is due to laboratory tests being carried out isothermally whereas in a FBC boiler the fluidized bed is considerably hotter than the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens. These were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3-2.5 m s-1. Tests were carried out over a range of bed temperatures (200-500°C) and cooled specimen surface temperatures (115-500°C), with a maximum temperature difference between the two of 320°C. Although specimens exposed isothermally still showed maximum wastage at intermediate temperatures (about 350°C), those which were cooled showed high levels of wastage at temperatures as low as 200°C in a similar manner to FBC boilers. Cooling may modify the isothermal erosion-corrosion curve, causing it to broaden and the maximum wastage rate to shift to lower temperatures. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of a room heated at the base and consisting of two vents at different levels. We explore how the air flow rate and internal temperature relative to the exterior vary as a function of the vent areas, position of the vents and heat load in order to establish appropriate ventilation strategies for a room. When the room is heated by a distributed source, the room becomes well mixed and the steady state ventilation rate depends on the heating rate, the area of the vents and the distance between the lower and upper level vents. However, when the room is heated by a localised source the room becomes stratified. If the effective ventilation area is sufficiently large, then the interface separating the two layers lies above the inlet vent and the lower layer is comprised of ambient fluid. In this case the upper layer is warmer than in the well mixed case and the ventilation rate is smaller. However, if the effective area for ventilation is sufficiently small, then the interface separating the two layers lies below the inlet vent and the lower layer is comprised of warm fluid which originates as the cold incoming fluid mixes during descent from the vent through the upper layer. In this case both the ventilation rate and the upper layer temperature are the same as in the case of a distributed heat load. As the vertical separation between lower and upper level vents decreases, then the temperature difference between the layers falls to zero and the room becomes approximately well mixed. These findings suggest how the appropriate ventilation strategy for a room can be varied depending on the exterior temperature, with mixing ventilation more suitable for winter conditions and displacement ventilation for warmer external temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of random surface roughness on slip flow and heat transfer in microbearings are investigated. A three-dimensional random surface roughness model characterized by fractal geometry is used to describe the multiscale self-affine roughness, which is represented by the modified two-variable Weierstrass- Mandelbrot (W-M) functions, at micro-scale. Based on this fractal characterization, the roles of rarefaction and roughness on the thermal and flow properties in microbearings are predicted and evaluated using numerical analyses and simulations. The results show that the boundary conditions of velocity slip and temperature jump depend not only on the Knudsen number but also on the surface roughness. It is found that the effects of the gas rarefaction and surface roughness on flow behavior and heat transfer in the microbearing are strongly coupled. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. In addition, the effects of temperature difference and relative roughness on the heat transfer in the bearing are also analyzed and discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.