22 resultados para Brake lamps.
em Cambridge University Engineering Department Publications Database
Resumo:
Compact Fluorescent Lamps (CFL) incorporating electronic ballasts are widely used in lighting. In many cases the ability to dim the lamp is a requirement Dimming can be achieved by varying the voltage supplied to the inverter or by changing the switching frequency of the inverter. The effect of dimming by both approaches on the power losses in the inverter is studied in this work. The lamp and associated inverter has been modeled in PSPICE, using a behavioral model for the CFL. Predicted losses are in good agreement with experimental data obtained from calorimetry. The model was then used to determine the distribution of losses within the inverter, enabling a comparison of the effects of the two dimming methods to be made. © 2006 IEEE.
Resumo:
In this study an inductor-less piezoelectric transformer (PT) based ballast for a 5 W CFL has been designed and simulated. The predictions of circuit currents and losses closely match experimentally measured values. The total simulated loss figure was confirmed against practically determined losses using a precision mini-calorimeter. Using simulation to disaggregate the total loss figure, it is seen that the PT makes the largest contribution to the total losses in such ballast.
Resumo:
Commercially available integrated compact fluorescent lamps (CFLs) use self-resonant ballasts on grounds of simplicity and cost. To understand how to improve ballast efficiency, it is necessary to quantify the losses. The losses occurring in these ballasts have been directly measured using a precision mini-calorimeter. In addition, a Pspice model has been used to simulate the performance of an 18 W integrated CFL. The lamp has been represented by a behavioural model and Jiles-Atherton equations were used to model the current transformer core. The total loss is in close agreement with measurements from the mini-calorimeter, confirming the accuracy of the model. The total loss was then disaggregated into component losses by simulation, showing that the output inductor is the primary source of loss, followed by the inverter switches. © 2011 The Institution of Engineering and Technology.
Resumo:
Compact fluorescent lamps (CFLs) incorporating electronic ballasts are widely used in lighting. In many cases, the ability to dim the lamp is a requirement. Dimming can be achieved by varying the switching frequency of the inverter or by changing the voltage supplied to the inverter. The effect of dimming by both approaches on the power losses in the inverter is studied in this work. The lamp and associated inverter has been modeled in Pspice, using a behavioral model for the CFL. Predicted losses are in good agreement with experimental data obtained from calorimetry. After verification, the model was then used to determine the distribution of losses within the inverter, enabling a comparison of the effects of the two dimming methods to be made. © 2011 IEEE.
Resumo:
Predictive models of friction-induced vibration have proved elusive despite decades of research. There are many mechanisms that can cause brake squeal; friction coupled systems can be highly sensitive to small perturbations; and the dynamic properties of friction at the contact zone seem to be poorly understood. This paper describes experimental and theoretical work aimed at identifying the key ingredients of a predictive model. A large-scale experiment was carried out to identify squeal initiations using a pin-on-disc test rig: approximately 30,000 squeal initiations were recorded, covering a very wide range of frequencies. The theoretical model allows for completely general linear systems coupled at a single sliding point by friction: squeal is predicted using a linearised stability analysis. Results will be presented that show that almost all observed squeal events can be predicted within this model framework, but that some subsets require innovative friction modelling: predictions are highly dependent on the particular choice of friction model and its associated parameters. Copyright © 2012 by ASME.
Resumo:
Predictive models of friction-induced vibration have proved elusive despite decades of research. There are many mechanisms that can cause brake squeal; friction coupled systems can be highly sensitive to small perturbations; and the dynamic properties of friction at the contact zone seem to be poorly understood. This paper describes experimental and theoretical work aimed at identifying the key ingredients of a predictive model. A large-scale experiment was carried out to identify squeal initiations using a pin-on-disc test rig: approximately 30,000 squeal initiations were recorded, covering a very wide range of frequencies. The theoretical model allows for completely general linear systems coupled at a single sliding point by friction: squeal is predicted using a linearised stability analysis. Results will be presented that show that almost all observed squeal events can be predicted within this model framework, but that some subsets require innovative friction modelling: predictions are highly dependent on the particular choice of friction model and its associated parameters. Copyright © 2012 by ASME.
Resumo:
An articulated lorry was instrumented in order to measure its performance in straight-line braking. The trailer was fitted with two interchangeable tandem axle sub-chassis, one with an air suspension and the other with a steel monoleaf four-spring suspension. The brakes were only applied to the trailer axles, which were fitted with anti-lock braking systems (ABS), with the brake torque controlled in response to anticipated locking of the leading axle of the tandem. The vehicle with the air suspension was observed to have significantly better braking performance than the steel suspension, and to generate smaller inter-axle load transfer and smaller vertical dynamic tyre forces. Computer models of the two suspensions were developed, including their brakes and anti-lock systems. The models were found to reproduce most of the important features of the experimental results. It was concluded that the poor braking performance of the steel four-spring suspension was mainly due to interaction between the ABS and inter-axle load transfer effects. The effect of road roughness was investigated and it was found that vehicle stopping distances can increase significantly with increasing road roughness. Two alternative anti-lock braking control strategies were simulated. It was found that independent sensing and actuation of the ABS system on each wheel greatly reduced the difference in stopping distances between the air and steel suspensions. A control strategy based on limiting wheel slip was least susceptible to the effects of road roughness.