18 resultados para Boundary Value Problem
em Cambridge University Engineering Department Publications Database
Resumo:
A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann-Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domains.
Resumo:
A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a new, compact derivation of state-space formulae for the so-called discretisation-based solution of the H∞ sampled-data control problem. Our approach is based on the established technique of continuous time-lifting, which is used to isometrically map the continuous-time, linear, periodically time-varying, sampled-data problem to a discretetime, linear, time-invariant problem. State-space formulae are derived for the equivalent, discrete-time problem by solving a set of two-point, boundary-value problems. The formulae accommodate a direct feed-through term from the disturbance inputs to the controlled outputs of the original plant and are simple, requiring the computation of only a single matrix exponential. It is also shown that the resultant formulae can be easily re-structured to give a numerically robust algorithm for computing the state-space matrices. © 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
An analytical solution is presented for the vertical consolidation of a cylindrical annulus of clay with horizontal drainage occurring to concentric internal and external drainage boundaries. Numerical results are given for various ratios of internal and external radii and it is shown that solutions for conventional one-dimensional consolidation, and for consolidation of a cylindrical block of clay with drainage only to the outer cylindrical boundary form extremes to the analysis presented here. An application of the solution to the estimation of horizontal permeability of clay is briefly described.
Resumo:
When two rough surfaces are loaded together it is well known that the area of true contact is very much smaller then the geometric area and that, consequently, local contact pressures are very much greater than the nominal value. If the asperities on each surface can be thought of as possessing smooth summits and each of the solids is elastically isotropic then the pressure distribution will consist of a series of small, but severe, Hertzian patches. However, if one of both of the surfaces in question is protected by a boundary layer then both the number and dimensions of these patches, and the form of the pressure distribution within them, will be modified. Recent experimental evidence from studies using both Atomic Force Microscopy and micro-tribometry suggests that boundary films produced by the action of commercial anti-wear additives, such as ZDTP, exhibit mechanical properties, which are affected by local values of pressure. These changes bring about further modifications to local conditions. These effects have been explored in a numerical model of rough surface contact and the implications for the mechanisms of surface distress and wear are discussed. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The complex, fragmented and diverse aspects of a sustainable development perspective are translated into an eight-point framework that defines a problem boundary larger than that traditionally adopted by civil engineers. This leads to practical questions intended to inform engineers who ask 'am I being sustainable?' during project implementation. The value of the questions is tested against a case history of a wastewater treatment project. This demonstrates the relevance of the questions to successive project delivery phases of defining the problem, choosing a solution and implementing that solution through design, construction and operation. The case history highlights that answers to several of the additional questions raised by considering this wider problem space are currently buried within government and clients' policies, regulations and standard practice; these answers may not be accessible to the professional engineer.
Resumo:
Although partially observable Markov decision processes (POMDPs) have shown great promise as a framework for dialog management in spoken dialog systems, important scalability issues remain. This paper tackles the problem of scaling slot-filling POMDP-based dialog managers to many slots with a novel technique called composite point-based value iteration (CSPBVI). CSPBVI creates a "local" POMDP policy for each slot; at runtime, each slot nominates an action and a heuristic chooses which action to take. Experiments in dialog simulation show that CSPBVI successfully scales POMDP-based dialog managers without compromising performance gains over baseline techniques and preserving robustness to errors in user model estimation. Copyright © 2006, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
Resumo:
There is increasing adoption of computer-based tools to support the product development process. Tolls include computer-aided design, computer-aided manufacture, systems engineering and product data management systems. The fact that companies choose to invest in tools might be regarded as evidence that tools, in aggregate, are perceived to possess business value through their application to engineering activities. Yet the ways in which value accrues from tool technology are poorly understood.
This report records the proceedings of an international workshop during which some novel approaches to improving our understanding of this problem of tool valuation were presented and debated. The value of methods and processes were also discussed. The workshop brought together British, Dutch, German and Italian researchers. The presenters included speakers from industry and academia (the University of Cambridge, the University of Magdeburg and the Politechnico de Torino)
The work presented showed great variety. Research methods include case studies, questionnaires, statistical analysis, semi-structured interviews, deduction, inductive reasoning, the recording of anecdotes and analogies. The presentations drew on financial investment theory, the industrial experience of workshop participants, discussions with students developing tools, modern economic theories and speculation on the effects of company capabilities.
Resumo:
in this contribution we discuss a stochastic framework for air traffic conflict resolution. The conflict resolution task is posed as the problem of optimizing an expected value criterion. Optimization is carried out by Monte Carlo Markov Chain (MCMC) simulation. A numerical example illustrates the proposed strategy. Copyright © 2005 IFAC.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.