22 resultados para Bone Cell Adhesion, Ion-implanted, Titanium Discs, Argon ions, Adhesion and Proliferation, Osteoblast growth, Cell Adhesion

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632. 8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the electrical properties of Silicon-on-Insulator photonic crystals as a function of doping level and air filling factor. A very interesting trade-off between conductivity and optical losses in L3 cavities is also found. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and structural characteristics of tantalum-titanium bilayers on silicon reacted by electron beam heating have been investigated over a wide range of temperature and time conditions. The reacted layers exhibit low sheet resistance and stable electrical characteristics up to at least 1100℃. Titanium starts reacting from 750℃ onwards for 100 milliseconds reaction times whereas tantalum starts reacting only above 900℃ for such short reaction times. RBS results confirm that silicon is the major diffusing species and there is no evidence for the formation of ternary silicides. Reactions have also been explored on millisecond time scales by non-isothermal heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and effective thermal processing methods using electron beams are described in this paper. Heating times ranging from a fraction of a second to several seconds and temperatures up to 1400°C are attainable. Applications such as the annealing of ion implanted material, both without significant dopant diffusion and with highly controlled diffusion of impurities, are described. The technique has been used successfully to activate source/drain regions for fine geometry NMOS transistors. It is shown that electron beams can produce localised heating of semiconductor substrates and a resolution of approximately 1 μm has been achieved. Electron beam heating has been applied to improving the crystalline quality of silicon-on sapphire used in CMOS device fabrication. Silicon layers with defect levels approaching bulk material have been obtained. Finally, the combination of isothermal and selective annealing is shown to have application in recrystallisation of polysilicon films on an insulating layer. The approach provides the opportunity of producing a silicon-on-insulator substrate with improved crystalline quality compared to silicon-on-sapphire at a potentially lower cost. It is suggested that rapid heating methods are expected to provide a real alternative to conventional furnace processing of semiconductor devices in the development of fabrication technology. © 1984 Benn electronics Publications Ltd, Luton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.