26 resultados para Blind, Periodicals for the

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a high reliability. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources. © 2014 Henning Sprekeler, Tiziano Zito and Laurenz Wiskott.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is in two parts and addresses two of getting more information out of the RF signal from three-dimensional (3D) mechanically-swept medical ultrasound . The first topic is the use of non-blind deconvolution improve the clarity of the data, particularly in the direction to the individual B-scans. The second topic is imaging. We present a robust and efficient approach to estimation and display of axial strain information. deconvolution, we calculate an estimate of the point-spread at each depth in the image using Field II. This is used as of an Expectation Maximisation (EM) framework in which ultrasound scatterer field is modelled as the product of (a) a smooth function and (b) a fine-grain varying function. the E step, a Wiener filter is used to estimate the scatterer based on an assumed piecewise smooth component. In the M , wavelet de-noising is used to estimate the piecewise smooth from the scatterer field. strain imaging, we use a quasi-static approach with efficient based algorithms. Our contributions lie in robust and 3D displacement tracking, point-wise quality-weighted , and a stable display that shows not only strain but an indication of the quality of the data at each point in the . This enables clinicians to see where the strain estimate is and where it is mostly noise. deconvolution, we present in-vivo images and simulations quantitative performance measures. With the blurred 3D taken as OdB, we get an improvement in signal to noise ratio 4.6dB with a Wiener filter alone, 4.36dB with the ForWaRD and S.18dB with our EM algorithm. For strain imaging show images based on 2D and 3D data and describe how full D analysis can be performed in about 20 seconds on a typical . We will also present initial results of our clinical study to explore the applications of our system in our local hospital. © 2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) on a discrete non-linear, non-Gaussian state space system with unknown parameters. Our particular application is in the field of digital communication systems. Each input data point is taken from a finite set of symbols. We represent transmission media as a fixed filter with a finite impulse response (FIR), hence a discrete state-space system is formed. Conventional Markov chain Monte Carlo (MCMC) techniques such as the Gibbs sampler are unsuitable for this task because they can only perform processing on a batch of data. Data arrives sequentially, so it would seem sensible to process it in this way. In addition, many communication systems are interactive, so there is a maximum level of latency that can be tolerated before a symbol is decoded. We will demonstrate this method by simulation and compare its performance to existing techniques.