7 resultados para Biology and Genetics

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.