68 resultados para Biological engineers
em Cambridge University Engineering Department Publications Database
Resumo:
Observation shows that the watershed-scale models in common use in the United States (US) differ from those used in the European Union (EU). The question arises whether the difference in model use is due to familiarity or necessity. Do conditions in each continent require the use of unique watershed-scale models, or are models sufficiently customizable that independent development of models that serve the same purpose (e.g., continuous/event- based, lumped/distributed, field-Awatershed-scale) is unnecessary? This paper explores this question through the application of two continuous, semi-distributed, watershed-scale models (HSPF and HBV-INCA) to a rural catchment in southern England. The Hydrological Simulation Program-Fortran (HSPF) model is in wide use in the United States. The Integrated Catchments (INCA) model has been used extensively in Europe, and particularly in England. The results of simulation from both models are presented herein. Both models performed adequately according to the criteria set for them. This suggests that there was not a necessity to have alternative, yet similar, models. This partially supports a general conclusion that resources should be devoted towards training in the use of existing models rather than development of new models that serve a similar purpose to existing models. A further comparison of water quality predictions from both models may alter this conclusion.
Resumo:
Several agencies in the United Kingdom have interest in the water quality of old navigational canals that have fallen into disuse after the decline of commercial canal transportation. The interested agencies desired a model to predict the water quantity and quality of inland navigational canals in order to evaluate management options to address the issues in the natural streams to which they discharge. Inland navigational canals have unique drivers of their hydrology and water quality compared to either natural streams, irrigation canals, or larger navigational canals connected to seas or oceans. Water in an inland canal is typically sourced from a reservoir and artificially pumped to a summit reach; its movement downhill is controlled by the activity of boats and overflow weirs. Stagnant impoundments between locks, which might normally be expected to result in a decrease in the concentration of sediment-associated pollutants, actually have surprisingly high levels of sediment due to boat traffic. Algal growth in the stagnant reach can be high. This paper describes a canal model developed to simulate hydrology and water quality in inland navigational canals. This model was successfully applied to the Kennet and Avon Canal to predict hydrology, sediment generation and transport, and algal growth and transport. The model is responsive to external influences such as sunlight, temperature, nutrient concentrations, boat traffic, and runoff from the contributing catchment area.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
Nano-sized TiNi powder with an average size of 50nm was consolidated using spark plasma sintering (SPS) at 800 °C for 5min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H2O2) solution at 60 °C followed by heat treatment at 400 °C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi. © IOP Publishing Ltd.