78 resultados para Biogeochemical hot-spot

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avalanche multiplication has been one of the major destructive failure mechanisms in IGBTs; in order to avoid operating an IGBT under abnormal conditions, it is desirable to develop peripheral protecting circuits monolithically integrated without compromising the operation and performance of the IGBT. In this paper, a monolithically integrated avalanche diode (D av) for 600V Trench IGBT over-voltage protection is proposed. The mix-mode transient simulation proves the clamping capability of the D av when the IGBT is experiencing over-voltage stress in unclamped inductive switching (UIS) test. The spread of avalanche energy, which prevents hot-spot formation, through the help of the avalanche diode feeding back a large fraction of the avalanche current to a gate resistance (R G) is also explained. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador: