11 resultados para Binh Phuóc
em Cambridge University Engineering Department Publications Database
Resumo:
The development of the Nanolith parallel electron-beam writing head was discussed. The fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in the lithographic system were described. The microcathode exhibited a peak current of 10.5 μA at 48 V when operated with a duty cycle of 0.5 percent.
Resumo:
The ability to grow carbon nanotubes/nanofibres (CNs) with a high degree of uniformity is desirable in many applications. In this paper, the structural uniformity of CNs produced by plasma enhanced chemical vapour deposition is evaluated for field emission applications. When single isolated CNs were deposited using this technology, the structures exhibited remarkable uniformity in terms of diameter and height (standard deviations were 4.1 and 6.3% respectively of the average diameter and height). The lithographic conditions to achieve a high yield of single CNs are also discussed. Using the height and diameter uniformity statistics, we show that it is indeed possible to accurately predict the average field enhancement factor and the distribution of enhancement factors of the structures, which was confirmed by electrical emission measurements on individual CNs in an array.
Resumo:
Plasma enhanced chemical vapour deposition (PECVD) is a controlled technique for the production of vertically aligned multiwall carbon nanotubes for field emission applications. In this paper, we investigate the electrical properties of individual carbon nanotubes which is important for designing field emission devices. PECVD nanotubes exhibit a room temperature resistance of 1-10 kΩ/μm length (resistivity 10-6 to 10-5 Ω m) and have a maximum current carrying capability of 0.2-2 mA (current density 107-108 A/cm2). The field emission characteristics show that the field enhancement of the structures is strongly related to the geometry (height/radius) of the structures and maximum emission currents of ∼ 10 μA were obtained. The failure of nanotubes under field emission is also discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.