5 resultados para Bilateral osteoradionecrosis

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of recovering the 3D shape of a surface of revolution from a single uncalibrated perspective view. The algorithm introduced here makes use of the invariant properties of a surface of revolution and its silhouette to locate the image of the revolution axis, and to calibrate the focal length of the camera. The image is then normalized and rectified such that the resulting silhouette exhibits bilateral symmetry. Such a rectification leads to a simpler differential analysis of the silhouette, and yields a simple equation for depth recovery. It is shown that under a general camera configuration, there will be a 2-parameter family of solutions for the reconstruction. The first parameter corresponds to an unknown scale, whereas the second one corresponds to an unknown attitude of the object. By identifying the image of a latitude circle, the ambiguity due to the unknown attitude can be resolved. Experimental results on real images are presented, which demonstrate the quality of the reconstruction. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the wealth of data describing the neural mechanisms underlying classical conditioning, we know remarkably little about the mechanisms involved in acquisition of explicit contingency awareness. Subjects variably acquire contingency awareness in classical conditioning paradigms, in which they are able to describe the temporal relationship between a conditioned cue and its outcome. Previous studies have implicated the hippocampus and prefrontal cortex in the acquisition of explicit knowledge, although their specific roles remain unclear. We used functional magnetic resonance imaging to track the trial-by-trial acquisition of explicit knowledge in a concurrent trace and delay conditioning paradigm. We show that activity in bilateral middle frontal gyrus and parahippocampal gyrus correlates with the accuracy of explicit contingency awareness on each trial. In contrast, amygdala activation correlates with conditioned responses indexed by skin conductance responses (SCRs). These results demonstrate that brain regions known to be involved in other aspects of learning and memory also play a specific role, reflecting on each trial the acquisition and representation of contingency awareness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.