4 resultados para Behavioral teratology

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans appear to be sensitive to relative small changes in their surroundings. These changes are often initially perceived as irrelevant, but they can cause significant changes in behavior. However, how exactly people's behavior changes is often hard to quantify. A reliable and valid tool is needed in order to address such a question, ideally measuring an important point of interaction, such as the hand. Wearable-body-sensor systems can be used to obtain valuable, behavioral information. These systems are particularly useful for assessing functional interactions that occur between the endpoints of the upper limbs and our surroundings. A new method is explored that consists of computing hand position using a wearable sensor system and validating it against a gold standard reference measurement (optical tracking device). Initial outcomes related well to the gold standard measurements (r = 0.81) showing an acceptable average root mean square error of 0.09 meters. Subsequently, the use of this approach was further investigated by measuring differences in motor behavior, in response to a changing environment. Three subjects were asked to perform a water pouring task with three slightly different containers. Wavelet analysis was introduced to assess how motor consistency was affected by these small environmental changes. Results showed that the behavioral motor adjustments to a variable environment could be assessed by applying wavelet coherence techniques. Applying these procedures in everyday life, combined with correct research methodologies, can assist in quantifying how environmental changes can cause alterations in our motor behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotion is of fundamental importance in understanding adaptive behavior. In this paper we present two case studies of robot locomotion that demonstrate how higher level of behavioral diversity can be achieved while observing the principle of cheap design. More precisely, it is shown that, by exploiting the dynamics of the system-environment interaction, very simple controllers can be designed which is essential to achieve rapid locomotion. Special consideration must be given to the choice of body materials. We conclude with some speculation about the importance of locomotion for understanding cognition. © Springer-Verlag Berlin Heidelberg 2004.