13 resultados para Bauhin, Caspar, 1560-1624.

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes how the A -if) formulation may be applied to determine the losses in the stator duct spacers of large a.c. motors. The model is described in terms of its geometry and boundary conditions. The novel aspects of the application of the formulation to this problem are explained. These include the modelling of fixed currents sources (the stator windings), the location of the necessary cut surfaces and the determination of their magnetic scalar potential differences, and the implementation of periodic boundary conditions for vector variables. Results are presented showing how the duct spacer losses vary with load, and with the relative permeability of the spacer material. The effects of modelling iron nonlinearity, of both the spacer and the steel laminations, are also illustrated. © 1996 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to describe the growth and optimization of ballasted carbon nanotube (CNT) and CNT/Zinc Oxide nanostructures to produce novel electron sources for use in lighting and x-ray applications. © 2010 ITE and SID.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.