14 resultados para B-spline function
em Cambridge University Engineering Department Publications Database
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.
Resumo:
We present a fixed-grid finite element technique for fluid-structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b-spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision-stabilisation technique is used to ensure inf-sup stability. The beam equations are discretised with b-splines and the shell equations with subdivision basis functions, both leading to a rotation-free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet-Robin partitioning scheme, and the fluid equations are solved with a pressure-correction method. Auxiliary techniques employed for improving numerical robustness include the level-set based implicit representation of the structure interface on the fluid grid, a cut-cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. © 2013 John Wiley & Sons, Ltd.
Resumo:
We investigate how sensitive Gallager's codes are, when decoded by the sum-product algorithm, to the assumed noise level. We have found a remarkably simple function that fits the empirical results as a function of the actual noise level at both high and low noise levels. © 2004 Elsevier B.V.
Resumo:
We investigate how sensitive Gallager's codes are, when decoded by the sum-product algorithm, to the assumed noise level. We have found a remarkably simple function that fits the empirical results as a function of the actual noise level at both high and low noise levels. ©2003 Published by Elsevier Science B. V.
Resumo:
Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to block central opioid function while subjects performed a gambling task associated with rewards and losses of different magnitudes, in which the mean expected value was always zero. A graded influence of naloxone on reward outcome was evident in an attenuation of pleasure ratings for larger reward outcomes, an effect mirrored in attenuation of brain activity to increasing reward magnitude in rostral anterior cingulate cortex. A more striking effect was seen for losses such that under naloxone all levels of negative outcome were rated as more unpleasant. This hedonic effect was associated with enhanced activity in anterior insula and caudal anterior cingulate cortex, areas implicated in aversive processing. Our data indicate that a central opioid system contributes to both reward and loss processing in humans and directly modulates the hedonic experience of outcomes.