208 resultados para Axial loads

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many piled foundations have been destroyed under significant cyclic loads in earthquakes. Centrifuge modelling of a single pile subjected to cyclic loads has been conducted to investigate the influence of cyclic loads on the axial performance of the single pile. Different pile installation procedures were applied to compare the axial behaviour of different piles under cyclic loads. Pile head permanent settlements accumulated due to cyclic axial loads, and these increased with the increasing load amplitude. Also the pile head axial secant stiffness decreased with the increasing number of axial load cycles, and with increasing amplitude. Furthermore, the axial pile performance is influenced significantly by different installation methods. © 2010 ASCE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2 x 2 pile groups with bending and geometric properties similar to real 0.5 m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Offshore wind has enormous worldwide potential to generate increasing amounts of clean, renewable energy. Monopile foundations are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In this paper, the lateral and axial response of monopiles installed in undrained clays of varying shear strength and stiffness is investigated using three-dimensional finite element analysis. A combination of axial and lateral loads expected at an offshore wind farm located in a water depth of 30 m has been used in the analysis. Numerically derived monopile axial capacities will be compared to those calculated using an established method in the literature. In addition, the lateral monopile capacity will be determined at ultimate limit state and compared to that at the serviceability limit state. Through a parametric study, it will be shown that with the exception of extremely high axial loads that border on monopile axial capacities, variation in axial loads does not have a significant effect on the ultimate lateral capacity and lateral displacement of monopiles. © 2013 Indian Geotechnical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel, three-dimensional, single-pile model, formulated in the wavenumber domain and adapted to account for boundary conditions using the superposition of loading cases. The pile is modelled as a column in axial vibration, and a Euler-Bernoulli beam in lateral vibration. The surrounding soil is treated as a viscoelastic continuum. The response of the pile is presented in terms of the stiffness and damping coefficients, and also the magnitude and phase of the pile-head frequency-response function. Comparison with existing models shows that excellent agreement is observed between this model, a boundary-element formulation, and an elastic-continuum-type formulation. This three-dimensional model has an accuracy equivalent to a 3D boundary-element model, and a runtime similar to a 2D plane-strain analytical model. Analysis of the response of the single pile illustrates a difference in axial and lateral vibration behaviour; the displacement along the pile is relatively invariant under axial loads, but in lateral vibration the pile exhibits localised deformations. This implies that a plane-strain assumption is valid for axial loadings and only at higher frequencies for lateral loadings. © 2013 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: