2 resultados para Average Method
em Cambridge University Engineering Department Publications Database
Resumo:
An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.