162 resultados para Automatic Control Theory
em Cambridge University Engineering Department Publications Database
Resumo:
Model Predictive Control (MPC) represents a major paradigm shift in the field of automatic control. This radically affects synthesis techniques (illustrated by control of an unstable system) and underlying concepts (illustrated by control of a multivariable system), as well as lifting the control engineer's focus from prescriptions to specifications ('what' not 'how', illustrated by emulation of a conventional autopilot). Part of the objective of this paper is to emphasize the significance of this paradigm shift. Another part is to consider the fact that this shift was missed for many years by the academic community, and what this tells us about teaching and research in the field.
Resumo:
Presenting a control-theoretic treatment of stoichiometric systems, ... local parametric sensitivity analysis, the two approaches yield identical results. ...
Resumo:
This paper explores the evolving industrial control paradigm of product intelligence. The approach seeks to give a customer greater control over the processing of an order - by integrating technologies which allow for greater tracking of the order and methodologies which allow the customer [via the order] to dynamically influence the way the order is produced, stored or transported. The paper examines developments from four distinct perspectives: conceptual developments, theoretical issues, practical deployment and business opportunities. In each area, existing work is reviewed and open challenges for research are identified. The paper concludes by identifying four key obstacles to be overcome in order to successfully deploy product intelligence in an industrial application. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Zeno behavior is a dynamic phenomenon unique to hybrid systems in which an infinite number of discrete transitions occurs in a finite amount of time. This behavior commonly arises in mechanical systems undergoing impacts and optimal control problems, but its characterization for general hybrid systems is not completely understood. The goal of this paper is to develop a stability theory for Zeno hybrid systems that parallels classical Lyapunov theory; that is, we present Lyapunov-like sufficient conditions for Zeno behavior obtained by mapping solutions of complex hybrid systems to solutions of simpler Zeno hybrid systems defined on the first quadrant of the plane. These conditions are applied to Lagrangian hybrid systems, which model mechanical systems undergoing impacts, yielding simple sufficient conditions for Zeno behavior. Finally, the results are applied to robotic bipedal walking. © 2012 IEEE.
Resumo:
This paper employs dissipativity theory for the global analysis of limit cycles in particular dynamical systems of possibly high dimension. Oscillators are regarded as open systems that satisfy a particular dissipation inequality. It is shown that this characterization has implications for the global stability analysis of limit cycle oscillations: i) in isolated oscillators, ii) in interconnections of oscillators, and iii) for the global synchrony analysis in interconnections of identical oscillators. © 2007 IEEE.