2 resultados para Autologous endometrial coculture
em Cambridge University Engineering Department Publications Database
Resumo:
Gene microarray technology is highly effective in screening for differential gene expression and has hence become a popular tool in the molecular investigation of cancer. When applied to tumours, molecular characteristics may be correlated with clinical features such as response to chemotherapy. Exploitation of the huge amount of data generated by microarrays is difficult, however, and constitutes a major challenge in the advancement of this methodology. Independent component analysis (ICA), a modern statistical method, allows us to better understand data in such complex and noisy measurement environments. The technique has the potential to significantly increase the quality of the resulting data and improve the biological validity of subsequent analysis. We performed microarray experiments on 31 postmenopausal endometrial biopsies, comprising 11 benign and 20 malignant samples. We compared ICA to the established methods of principal component analysis (PCA), Cyber-T, and SAM. We show that ICA generated patterns that clearly characterized the malignant samples studied, in contrast to PCA. Moreover, ICA improved the biological validity of the genes identified as differentially expressed in endometrial carcinoma, compared to those found by Cyber-T and SAM. In particular, several genes involved in lipid metabolism that are differentially expressed in endometrial carcinoma were only found using this method. This report highlights the potential of ICA in the analysis of microarray data.
Resumo:
The gold standard in surgical management of a peripheral nerve gap is currently autologous nerve grafting. This confers patient morbidity and increases surgical time therefore innovative experimental strategies towards engineering a synthetic nerve conduit are welcome. We have developed a novel synthetic conduit made of poly ε-caprolactone (PCL) that has demonstrated promising peripheral nerve regeneration in short-term studies. This material has been engineered to permit translation into clinical practice and here we demonstrate that histological outcomes in a long-term in vivo experiment are comparable with that of autologous nerve grafting. A 1cm nerve gap in a rat sciatic nerve injury model was repaired with a PCL nerve conduit or an autologous nerve graft. At 18 weeks post surgical repair, there was a similar volume of regenerating axons within the nerve autograft and PCL conduit repair groups, and similar numbers of myelinated axons in the distal stump of both groups. Furthermore, there was evidence of comparable re-innervation of end organ muscle and skin with the only significant difference the lower wet weight of the muscle from the PCL conduit nerve repair group. This study stimulates further work on the potential use of this synthetic biodegradable PCL nerve conduit in a clinical setting.