215 resultados para Atomic beams

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface energy and surface atomic structure of tetrahedral amorphous carbon has been calculated by an ab-initio method. The surface atoms are found to reconstruct into sp2 sites often bonded in graphitic rings. Placing the dangling bonds on adjacent surface atoms lower their energy by π-bonding and this is the source of the low surface energy. The even lower surface energy of hydrogenated amorphous carbon (a-C:H) is due to the hydrogenation of all broken surface bonds. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.