13 resultados para Artistic actions
em Cambridge University Engineering Department Publications Database
Resumo:
A series of dynamic centrifuge tests on reduced scale models of flexible retaining structures were conducted on the Turner beam centrifuge at the Schofield Centre of the University of Cambridge. The paper illustrates the main results of the experimental work in terms of observed amplifications of ground motion and mobilised shear stiffness and damping ratio for all tests. The experimental results for one test on a pair of cantilevered walls in dense sand are also presented in terms of measured bending moments and horizontal displacements of the walls during (maximum values) and at the end of (residual values) each seismic event. Finally, the experimental data are discussed in the light of the results obtained from dynamic numerical analyses of the behaviour of cantilevered walls under real seismic actions. © 2010 Taylor & Francis Group, London.
Resumo:
Cognitive neuroscience defines the sense of agency as the experience of controlling one's own actions and, through this control, affecting the external world. We believe that the sense of personal agency is a key factor in how people experience interactions with technology. This paper draws on theoretical perspectives in cognitive neuroscience and describes two implicit methods through which personal agency can be empirically investigated. We report two experiments applying these methods to HCI problems. One shows that a new input modality - skin-based interaction - can substantially increase users' sense of agency. The second demonstrates that variations in the parameters of assistance techniques such as predictive mouse acceleration can have a significant impact on users' sense of agency. The methods presented provide designers with new ways of evaluating and refining empowering interaction techniques and interfaces, in which users experience an instinctive sense of control and ownership over their actions. Copyright 2012 ACM.
Resumo:
This paper describes an experimental investigation of the behaviour of embedded retaining walls under seismic actions. Nine centrifuge tests were carried out on reduced-scale models of pairs of retaining walls in dry sand, either cantilevered or with one level of props near the top. The experimental data indicate that, for maximum accelerations that are smaller than the critical limit equilibrium value, the retaining walls experience significant permanent displacements under increasing structural loads, whereas for larger accelerations the walls rotate under constant internal forces. The critical acceleration at which the walls start to rotate increases with increasing maximum acceleration. No significant displacements are measured if the current earthquake is less severe than earthquakes previously experienced by the wall. The increase of critical acceleration is explained in terms of redistribution of earth pressures and progressive mobilisation of the passive strength in front of the wall. The experimental data for cantilevered retaining walls indicate that the permanent displacements of the wall can be reasonably predicted adopting a Newmark-type calculation with a critical acceleration that is a fraction of the limit equilibrium value.
Resumo:
Model-based and model-free controllers can, in principle, learn arbitrary actions to optimize their behavior, at least those actions that can be expressed and explored. Indeed, these are often referred to as instrumental controllers because their choices are learned to be instrumental for the delivery of desired outcomes. Although this flexibility is very powerful, it comes with an attendant cost of learning. Evolution appears to have endowed everything from the simplest organisms to us with powerful, pre-specified, but inflexible alternatives. These responses are termed Pavlovian, after the famous Russian physiologist and psychologist Pavlov. The responses of the Pavlovian controller are determined by evolutionary (phylogenetic) considerations rather than (ontogenetic) aspects of the contingent development or learning of an individual. These responses directly interact with instrumental choices arising from goal-directed and habitual controllers. This interaction has been studied in a wealth of animal paradigms, and can be helpful, neutral, or harmful, according to circumstance. Although there has been less careful or analytical study of it in humans, it can be interpreted as underpinning a wealth of behavioral aberrations. © 2009 Elsevier Inc. All rights reserved.