14 resultados para Army and Navy Monument (Boston, Mass.)
em Cambridge University Engineering Department Publications Database
Resumo:
The utilisation of thin film technology to develop film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs), offers great potential to outperform the sensitivity and minimum detection limit of gravimetric sensors. Up to now, the choice between FBARs and SMRs depends primarily on the users' ability to design and fabricate Bragg reflectors and/or membranes, because neither of these two types of resonators has been demonstrated to be superior to the other. In the work reported here, it is shown that identically designed FBARs and SMRs resonating at the same frequency exhibit different responsitivities, Rm, to mass loadings, being the FBARs more responsive than the SMRs. For the specific device design and resonant frequency (∼2 GHz) of the resonators presented, FBARs' mass responsitivity is ∼20% greater than that of SMRs, and although this value should not be taken as universal for all possible device designs, it clearly indicates that FBAR devices should be favoured over SMRs in gravimetric sensing applications. © 2012 IEEE.
Resumo:
This paper introduces the problem of passive control of a chain of N identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The problem arises in the design of multi-storey buildings which are subjected to earthquake disturbances, but applies in other situations, for example vehicle platoons. The paper will study the scalar transfer functions from the disturbance to a given intermass displacement. It will be shown that these transfer functions can be conveniently represented in the form of complex iterative maps and that these maps provide a method to establish boundedness in N of the H ∞-norm of these transfer functions for certain choices of interconnection impedance. © 2013 IEEE.
Resumo:
Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.
Resumo:
The circumstances are investigated under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Previous work using a coupled beam model has highlighted the importance of veering pairs of modes. Such a veering pair can be approximated by a lumped system with two degrees of freedom. The worst case of acceleration amplification is shown to occur when the two oscillators are tuned to the same frequency, and for this case closed-form expressions are derived to show the parameter dependence of the acceleration ratio on the mass ratio and coupling strength. Sensitivity analysis of the eigenvalues and eigenvectors indicates that mass ratio is the most sensitive parameter for altering the veering behaviour in an undamped system. Non-proportional damping is also shown to have a strong influence on the veering behaviour. The study gives design guidelines to allow permissible acceleration levels to be achieved by the choice of the effective mass and damping of the indirectly driven subsystem relative to the directly driven subsystem. © 2013 Elsevier Ltd.