3 resultados para Archives publiques de l’État de Bahia, Brésil

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features. © 2012 IEEE.