67 resultados para Arc flash hazards

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of a highly sp3 bonded form of amorphous carbon denoted ta-C deposited from a filtered cathodic vacuum arc (FCVA) are described as a function of ion energy and deposition temperature. The sp3 fraction depends strongly on ion energy and reaches 85% at an ion energy of 100 eV. Other properties such as density and band gap vary in a similar fashion, with the optical gap reaching a maximum of 2.3 eV. These films are very smooth with area roughness of order 1 nm. The sp3 fraction falls suddenly to almost zero for deposition above about 200 °C.