26 resultados para Applied behaviour analysis
em Cambridge University Engineering Department Publications Database
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Companies aiming to be 'sustainability leaders' in their sector and governments wanting to support their ambitions need a means to assess the changes required to make a significant difference in the impact of their whole sector. Previous work on scenario analysis/scenario planning demonstrates extensive developments and applications, but as yet few attempts to integrate the 'triple bottom line' concerns of sustainability into scenario planning exercises. This paper, therefore, presents a methodology for scenario analysis of large change to an entire sector. The approach includes calculation of a 'triple bottom line graphic equaliser' to allow exploration and evaluation of the trade-offs between economic, environmental and social impacts. The methodology is applied to the UK's clothing and textiles sector, and results from the study of the sector are summarised. In reflecting on the specific study, some suggestions are made about future application of a similar methodology, including a template of candidate solutions that may lead to significant reduction in impacts. © 2007 Elsevier Ltd. All rights reserved.