83 resultados para Applications of Ceria Based Materials

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate and efficient computation of the distance function d for a given domain is important for many areas of numerical modeling. Partial differential (e.g. HamiltonJacobi type) equation based distance function algorithms have desirable computational efficiency and accuracy. In this study, as an alternative, a Poisson equation based level set (distance function) is considered and solved using the meshless boundary element method (BEM). The application of this for shape topology analysis, including the medial axis for domain decomposition, geometric de-featuring and other aspects of numerical modeling is assessed. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices. © 2014 by the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This issue of Superconductor Science and Technology is edited by Murakami, M., Cardwell, D.A., Salama, K., Krabbes, G., Habisreuther, T. and Gawalek, W. It contains 42 selected papers from the PASREG 2003 international workshop, held in Jena, Germany, 30 June - 2 July 2003. The workshop was organised by the Institut fur Physikalische Hochtechnologie, Jena, Germany and was the fourth in the series of workshops first held in Cambridge, UK, in 1997.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microstructure based acoustic model is introduced, which can be used to optimize the microstructure of cellular materials and thus to obtain their optimal acoustic property. This acoustic model is an unsteady one which is appropriate in the limit of low Reynolds numbers. The model involves three elements. This first involves the propagation of acoustic waves passing the cylinders whose axes are aligned parallel to the direction of propagation. The second model relates to the propagation of acoustic waves passing the cylinders whose axes are aligned perpendicular to the direction of propagation. In both cases the interaction between adjacent cylinders is taken into account by considering the effect of polygonal periodic boundary conditions. As these two models are linear they are combined to give the characteristics of propagation at arbitrary incidence. The third model involves propagation passing spheres in order to represent the joints. Heat transfer is also included. These three models are then used to expand the design space and calculate the optimum cell structure for desired acoustic performance in a number of different applications. Moreover, the application fields are also analyzed.