3 resultados para Aluminum Company of America

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been performed of the erosion of aluminium by silica sand particles at a velocity of 4.5 m s-1, both air-borne and in the form of a water-borne slurry. Measurements made under similar experimental conditions show that slurry erosion proceeds at a rate several times that of air-borne erosion, the ratio of the two rates depending strongly on the angle of impact. Sand particles become embedded into the metal surface during air-borne particle erosion, forming a composite layer of metal and silica, and provide the major cause of the difference in wear rate. The embedded particles giving rise to surface hardening and a significant reduction in the erosion rate. Embedment of erodent particles was not observed during slurry erosion. Lubrication of the impacting interfaces by water appears to have minimal effect on the wear of aluminium by slurry erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.