3 resultados para Aerosol absorption at 550 nm
em Cambridge University Engineering Department Publications Database
Resumo:
Gold-decorated silica nanoparticles were synthesized in a two-step process in which silica nanoparticles were produced by chemical vapor synthesis using tetraethylorthosilicate (TEOS) and subsequently decorated using two different gas-phase evaporative techniques. Both evaporative processes resulted in gold decoration of the silica particles. This study compares the mechanisms of particle decoration for a production method in which the gas and particles remain cool to a method in which the entire aerosol is heated. Results of transmission electron microscopy and visible spectroscopy studies indicate that both methods produce particles with similar morphologies and nearly identical absorption spectra, with peak absorption at 500-550 nm. A study of the thermal stability of the particles using heated-TEM indicates that the gold decoration on the particle surface remains stable at temperatures below 900 °C, above which the gold decoration begins to both evaporate and coalesce.
Resumo:
The propagation losses in the fundamental mode of a bicone made of highly reflecting metal or a dielectric of large refraction were approximately estimated using Leontovich's boundary condition. A 400-fold concentration of the energy flux density lias been obtained in a cross section which is much smaller than λ. Here, the losses are 2.5% at λ = 550 nm in an Ag bicone and 12% in a semiconductor bicone with a band gap of ≈1 eV for hv larger than the band gap. The excitation efficiency of a bicone has been estimated. While not too large, it can be increased significantly using the method proposed in the present paper. The application of the optical bicone for the multiplication of a semiconductor-laser frequency is discussed. The results obtained are also of use in scanning near-field optical microscopy and in experiments on focusing laser pulses of ultrahigh power. © 2000 Plenum/Kluwer Publishing Corporation.
Resumo:
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.