155 resultados para Aeronautics.

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of sound by turbulent boundary-layer flow at low Mach number over a rough wall is investigated by applying a theoretical model that describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of far-field radiated roughness noise. Models for the source statistics are obtained by scaling smooth-wall data by the increased skin friction velocity and boundary-layer thickness for a rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibit reasonable agreement with the predicted level. Estimates of the roughness noise for a Boeing 757 sized aircraft wing with idealized levels of surface roughness show that hi the high-frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels are observed for the roughness noise. The trailing edge noise is also enhanced by surface roughness somewhat A parametric study indicates that roughness height and roughness density significantly affect the roughness noise with roughness height having the dominant effect The roughness noise directivity varies with different levels of surface roughness. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for modelling and predicting the noise generated by the interaction between the unsteady wake shed from the rotor and a downstream row of stators in a modern ultra-high bypass ducted turbofan engine is described. An analytically-based model is developed to account for three main features of the problem. First, the way in which a typical unsteady wake disturbance from the rotor interacts and is distorted by the mean swirling flow as it propagates downstream. The analysis allows for the inclusion of mean entropy gradients and entropy perturbations. Second, the effects of real stator-blade geometry and proper representation of the genuinely three-dimensional nature of the problem. Third, to model the propagation of the resulting noise back upstream in mean swirling flow. The analytical nature of the problem allows for the inclusion of all wake harmonics and enables the response at all blade passing frequencies to be determined. Example results are presented for an initial wake distribution corresponding to a genuine rotor configuration. Comparisons between numerical data and the asymptotic model for the wake evolution are made. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador: