5 resultados para Added Value
em Cambridge University Engineering Department Publications Database
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. © 2010 Nagengast et al.
Resumo:
In new product development, the ability to integrate different dimensions of sustainability at a value chain level is still a complex, problematic goal. As product-service approaches are increasingly enabling the introduction of more sustainable paths, this paper describes the authors' experience thus far when building insights into conditions for the implementation of integrated solutions in a process of co-development and testing in real life conditions, which are driven by a social need focusing on food for people with reduced access. Throughout this process, which brought together producers, consumers and other stakeholders to design and test industrialised, sustainable solutions, empirical evidence demonstrates feasibility and usefulness of the approach and insight into the conditions for implementing interactive, comprehensive multi-stakeholder processes in real life situations. In addition, results show that the delivery of innovative solutions enabled to offer social added value, economic profits and environmental improvements under specific experimental conditions. © 2006 Elsevier Ltd. All rights reserved.