178 resultados para Active vibration controls

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration. © 2012 American Society of Mechanical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Active vibration control of a submerged hull is presented. A submarine hull can be idealised as a ring stiffened finite cylinder with applied fluid loading. At low frequencies, rotation of the propeller results in discrete tones at the blade passing frequency and its harmonics. The low frequency axial and radial vibration modes of the submerged body can result in a high level of radiated noise. Global hull modes are difficult to attenuate since passive control techniques such as damping materials are not practical due to size and weight constraints. This work investigates active vibration control of a submarine hull for attenuation of the structural and acoustic responses. Based on a feedforward algorithm at tonal frequencies, active vibration suppression of the axial and radial hull displacements are investigated. The effect of the various control arrangements on the structure-borne radiated noise is examined. Numerical simulations of the control performance are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The active suppression of structural vibration is normally achieved by either feedforward or feedback control. In the absence of a suitable reference signal feedforward control cannot be employed and feedback control is the only viable approach. Conventional feedback control algorithms (e.g. LQR and LQG) are designed on the basis of a mathematical model of the system and ideally the performance of the system should be robust against uncertainties in this model. The aim of this paper is to numerically investigate the robustness of LQR and LQG algorithms by designing the controller for a nominal system, and then assessing (via Monte Carlo simulation) the effects of uncertainties in the system. The ultimate concern is with the control of high frequency vibrations, where the short wavelength of the structural deformation induces a high sensitivity to imperfection. It is found that standard algorithms such as LQR and LQG are generally unfeasible for this case. This leads to a consideration of design strategies for the robust active control of high frequency vibrations. The system chosen for the numerical simulation concerns two coupled plates, which are randomized by the addition of point masses at random locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper theoretically investigates the application of tuned vibration absorbers and hybrid passive/active inertial actuators to reduce the vibrational responses of plates and shells. The passive/active actuators are initially applied to a simple plate. A model of a submerged hull consisting of a ring stiffened finite cylinder with bulkheads and external fluid loading is then considered. The fluctuating forces from the propeller result in excitation of the low frequency global hull modes. Inertial actuators and tuned vibration absorbers are located at each end of the hull and in circumferential arrays to reduce the hull structural response at its axial resonances. The control performance of the hybrid passive/active inertial actuator, where the passive component is tuned to a structural resonance, is compared to the attenuation achieved by a fully passive tuned vibration absorber. This work shows the potential of using hybrid passive/active inertial actuators to attenuate the global structural responses of a submerged vessel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: After investing significant amounts of time and money in conducting formal risk assessments, such as root cause analysis (RCA) or failure mode and effects analysis (FMEA), healthcare workers are left to their own devices in generating high-quality risk control options. They often experience difficulty in doing so, and tend toward an overreliance on administrative controls (the weakest category in the hierarchy of risk controls). This has important implications for patient safety and the cost effectiveness of risk management operations. This paper describes a before and after pilot study of the Generating Options for Active Risk Control (GO-ARC) technique, a novel tool to improve the quality of the risk control options generation process. OUTCOME MEASURES: The quantity, quality (using the three-tiered hierarchy of risk controls), variety, and novelty of risk controls generated. RESULTS: Use of the GO-ARC technique was associated with improvement on all measures. CONCLUSIONS: While this pilot study has some notable limitations, it appears that the GO-ARC technique improved the risk control options generation process. Further research is needed to confirm this finding. It is also important to note that improved risk control options are a necessary, but not sufficient, step toward the implementation of more robust risk controls.