22 resultados para Active layer depth
em Cambridge University Engineering Department Publications Database
Resumo:
We present experimental measurements on Silicon-on-insulator (SOI) photonic crystal slabs with an active layer containing Er3+ ions-doped Silicon nanoclusters (Si-nc), showing strong enhancement of 1.54 μm emission at room temperature. We provide a systematic theoretical analysis to interpret such results. In order to get further insight, we discuss experimental data on the guided luminescence of unpatterned SOI planar slot waveguides, which show enhanced light emission in transverse-magnetic (TM) modes over transverse-electric (TE) ones. ©2007 IEEE.
Resumo:
Due to the keen interest in improving the high-speed and high-temperature performance of 1.3-μm wavelength lasers, we compare, for the first time, the material gain of three different competing active layer materials, namely InGaAsP-InGaAsP, AlGaInAs-AlGaInAs, and InGaAsN-GaAs. We present a theoretical study of the gain of each quantum-well material system and present the factors that influence the material gain performance of each system. We find that AIGaInAs and InGaAsN active layer materials have substantially better material gain performance than the commonly used InGaAsP, both at room temperature and at high temperature.
Resumo:
Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimization of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40 Gbit/s using these devices.
Resumo:
This paper describes the fabrication and characterization of a carbon based, bottom gate, thin film transistor (TFT). The active layer is formed from highly sp2 bonded nitrogenated amorphous carbon (a-C:N) which is deposited at room temperature using a filtered cathodic vacuum arc technique. The TFT shows p-channel operation. The device exhibits a threshold voltage of 15 V and a field effect mobility of 10-4 cm2 V-1 s-1 . The valence band tail of a-C:N is observed to be much shallower than that of a-Si:H, but does not appear to severely impede the shift of the Fermi level. This may indicate that a significant proportion of the a-C tail states can still contribute to conduction.
All-optical switching in a vertical coupler space switch employing photocarrier-induced nonlinearity
Resumo:
A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.
Resumo:
Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimisation of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40Gbit/s using these devices.
Resumo:
A new approach is presented to resolve bias-induced metastability mechanisms in hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The post stress relaxation of threshold voltage (V(T)) was employed to quantitatively distinguish between the charge trapping process in gate dielectric and defect state creation in active layer of transistor. The kinetics of the charge de-trapping from the SiN traps is analytically modeled and a Gaussian distribution of gap states is extracted for the SiN. Indeed, the relaxation in V(T) is in good agreement with the theory underlying the kinetics of charge de-trapping from gate dielectric. For the TFTs used in this work, the charge trapping in the SiN gate dielectric is shown to be the dominant metastability mechanism even at bias stress levels as low as 10 V.
Resumo:
The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics. © 2010 American Institute of Physics.
Resumo:
This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.