10 resultados para Academies of swimming
em Cambridge University Engineering Department Publications Database
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.
Resumo:
We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e.g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of system parameters for which the swimming velocity is maximal. The swimming direction reversal is addressed by incorporating photoresponsive materials, which in the photoactuated state can mimic natural mastigonemes. © 2013 American Physical Society.
Resumo:
We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e.g., length, stiffness, fluid viscosity, and magnetic field) is explored using a computational framework in which the magnetostatic, fluid dynamic, and solid mechanics equations are solved simultaneously. A dimensionless analysis is carried out to obtain an optimal combination of system parameters for which the swimming velocity is maximal. The swimming direction reversal is addressed by incorporating photoresponsive materials, which in the photoactuated state can mimic natural mastigonemes.
Resumo:
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
The study of pair-wise interactions between swimming microorganisms is fundamental to the understanding of the rheological and transport properties of semi-dilute suspensions. In this paper, the hydrodynamic interaction of two ciliated microorganisms is investigated numerically using a boundary-element method, and the microorganisms are modeled as spherical squirmers that swim by time-dependent surface deformations. The results show that the inclusion of the unsteady terms in the ciliary propulsion model has a large impact on the trajectories of the interacting cells, and causes a significant change in scattering angles with potential important consequences on the diffusion properties of semi-dilute suspensions. Furthermore, the analysis of the shear stress acting on the surface of the microorganisms revealed that the duration and the intensity of the near-field interaction are significantly modified by the presence of unsteadiness. This observation may account for the hydrodynamic nature of randomness in some biological reactions, and supersedes the distinction between intrinsic randomness and hydrodynamic interactions, adding a further element to the understanding and modeling of interacting microorganisms.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over \approx 10^4 cells and obtained in a few minutes.