2 resultados para APA of São Pedro and Analândia

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the multi-site manufacturing domain, systems-of-systems (SoS) are rarely called so. However, there exist a number of collaborative manufacturing paradigms which closely relate to system-of-system principles. These include distributed manufacturing, dispersed network manufacturing, virtual enterprises and cloud manufacturing/manufacturing-as-a-service. This paper provides an overview of these terms and paradigms, exploring their characteristics, overlaps and differences. These manufacturing paradigms are then considered in relation to five key system-of-systems characteristics: autonomy, belonging, connectivity, diversity and emergence. Data collected from two surveys of academic and industry experts is presented and discussed, with key challenges and barriers to multi-site manufacturing SoS identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.