8 resultados para ANTHELMINTIC RESISTANT NEMATODES

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the use of 241Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (as little as 0.12%) amounts of 241Am to the conventional light water reactor fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without a notable fuel cycle length penalty. This is possible due to favorable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favorable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings. Addition of either 237Np or 241Am would provide substantial but not ultimate protection from misuse of Pu originating in the spent fuel from the commercial power reactors. Therefore, the benefits from application of the concept would have to be carefully evaluated against the additional costs and proliferation risks associated with manufacturing of 237Np or 241Am doped fuel. Although this work concerns specifically with PWRs, the conclusions could also be applied to BWRs and, to some extent, to other thermal spectrum reactor types. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the use of 141Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (less than 1 %) amounts of 241Am to the conventional LWR fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without notable fuel cycle length penalty. This is possible due to favourable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favourable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classes of lattice material are reviewed, and their fracture response is explored in the context of the core of a sandwich panel. Attention is focussed on the strength of a sandwich plate with centre-cracked core made from an elastic-brittle square lattice. Predictions are summarised for the un-notched strength of the sandwiched core and for the fracture toughness of the lattice under remote tension, remote compression or remote shear. It is assumed that the lattice fails when the local stress in the cell walls attains the tensile or compressive strength of the solid, or when local buckling occurs. The local failure mechanism that dictates the unnotched strength may be different from that dictating the fracture toughness. Fracture mechanism maps are generated in order to reveal the dominant local failure mechanism for any given cell wall material.