13 resultados para ANESTHETICS, Volatile: sevoflurane
em Cambridge University Engineering Department Publications Database
Metal-polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors
Resumo:
A new type of chemi-resistor based on a novel metal-polymer composite is described. The composite contains nickel particles with sharp nano-scale surface features, which are intimately coated by the polymer matrix so that they do not come into direct physical contact. No conductive chains of filler particles are formed even at loadings above the percolation threshold and the composite is intrinsically insulating. However, when subjected to compression the composite becomes conductive, with sample resistance falling from ≥ 1012 Ω to < 0.01 Ω. The composite can be formed into insulating granules, which display similar properties to the bulk form. A bed of granules compressed between permeable frits provides a porous structure with a start resistance set by the degree of compression while the granules are free to swell when exposed to volatile organic compounds (VOCs). The granular bed presents a large surface area for the adsorption of VOCs from the gas stream flowing through it. The response of this system to a variety of vapours has been studied for two different sizes of the granular bed and for different matrix polymers. Large responses, ΔR/R0 ≥ 10^7, are observed when saturated vapours are passed through the chemi-resistor. Rapid response allows real time sensing of VOCs and the initial state is recovered in a few seconds by purging with an inert gas stream. The variation in response as a function of VOC concentration is determined.
Resumo:
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼105, a gate leakage current below ∼300 pA, and excellent retention characteristics for over 104 s. © 2014 AIP Publishing LLC.
Resumo:
A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.
Resumo:
Transport measurements were performed on individual PECVD grown MWCNT nanobridge structures. Temperature dependent conductance measurements show that as the temperature is decreased, the conductance also decreases. The nanotubes were able to carry high current densities with the observed maximum at ∼108 A/cm2. High volatile measurements reveal that the PECVD grown MWCNTs break down in segments of nanotube shells.
Resumo:
This study has established that the use of a computer model, the Anaerobic Digestion Model 1, is suitable for investigation of the stability and energy balance of the anaerobic digestion of food waste. In simulations, digestion of undiluted food waste was less stable than that of sewage sludge or mixtures of the two, but gave much higher average methane yields per volume of digester. In the best case scenario simulations, food waste resulted in the production of 5.3 Nm3 of methane per day per m3 of digester volume, much higher than that of sewage sludge alone at 1.1 Nm3 of methane per day per m3. There was no substantial difference in the yield per volatile solids added. Food waste, however, did not sustain a stable digestion if its cation content was below a certain level. Mixing food waste and sewage sludge allowed digestion with a lower cation content. The changes in composition of food waste feedstock caused great variation in biogas output and even more so volatile fatty acid concentration, which lowered the digestion stability. Modelling anaerobic digestion allowed simulation of failure scenarios and gave insights into the importance of the cation/anion balance and the magnitude of variability in feedstocks.
Resumo:
New firms in emerging industries are subject to complex dynamic processes which defy the attempts at prediction embodied in business conjectures. Discontinuous growth is common, but the issue of interruptions in the early growth of new firms has not been adequately addressed in the mainstream literature. We examine the prevalence of interruptions to growth in a cohort study of the growth trajectories of firms founded in 1990, then look to cases studies of individual firms to investigate underlying causes. We find that substantial growth is rare and continuous growth unusual, and that growth interruptions are the result of both internal and external dynamics. The managers of growing firms face shortages of vital resources and significant problems of resource synchronisation and coordination, many of which can lead to what are, in effect, changes of phase state. Meanwhile, the volatile environment of an emerging industry presents particular problems to young firms which have not yet built up reserves to sustain them through short-term crises. However, problem solving by those that survive provides an important source of learning which can underpin their future development. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.