31 resultados para AM Museums (General). Collectors and collecting (General)
em Cambridge University Engineering Department Publications Database
Resumo:
The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.
Resumo:
The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.