14 resultados para Aço AISI 316L
em Cambridge University Engineering Department Publications Database
Resumo:
The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.
Resumo:
The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs. © 2011 Elsevier Ltd.
Resumo:
The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.
Resumo:
The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.
Short-term cytotoxic and inflammatory responses of human monocytes to stainless steel fibre networks
Resumo:
The aim of the current work was to examine the human monocyte response to 444 ferritic stainless steel fibre networks. 316L austenitic fibre networks, of the same fibre volume fraction, were used as control surfaces. Fluorescence and scanning electron microscopies suggest that the cells exhibited a good degree of attachment and penetration throughout both networks. Lactate Dehydrogenase (LDH) and TNF-α releases were used as indicators of cytotoxicity and inflammatory responses respectively. LDH release indicated similar levels of monocyte viability when in contact with the 444 and 316L fibre networks. Both networks elicited a low level secretion of TNF-α, which was significantly lower than that of the positive control wells containing zymosan. Collectively, the results suggest that 444 ferritic and 316L austenitic networks induced similar cytotoxic and inflammatory responses from human monocytes. © 2012 Materials Research Society.
Resumo:
The low speed impact responses of simply-supported and clamped sandwich beams with corrugated and Y-frame cores have been measured in a drop-weight apparatus at 5 m s-1. The AISI 304 stainless steel sandwich beams comprised two identical face sheets and represented 1:20 scale versions of ship hull designs. No significant rate effects were observed at impact speeds representative of ship collisions: the drop-weight responses were comparable to the ones measured quasi-statically. Moreover, the corrugated and Y-frame core beams had similar performances. Three-dimensional finite element (FE) models simulated the experiments and were in good agreement with the measurements. The simulations demonstrated correctly that the sandwich beams collapsed by core indentation under both quasi-static loading and in the drop-weight experiments. These FE models were then used to investigate the sensitivity of impact response to (i) velocity, over a wider range of velocities than achievable with the drop-weight apparatus, and (ii) the presence of the back face sheet. The dynamic responses of sandwich beams with both front and back face sheets were found to be within 20% of the quasi-static responses for speeds less than approximately 5 m s-1. This suggests that quasi-static considerations are adequate to model the collision of a sandwich ship hull. By contrast, beams without a back face collapsed by Brazier buckling under quasi-static loading conditions, and by core indentation at a loading velocity of 5 m s-1. Thus, dynamic considerations are needed in ship hull designs that do not employ a back face. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, highly porous fibre networks made of 316L fibres, with different fibre volume fractions, are characterized in terms of network architecture, elastic constants and fracture energies. Elastic constants are measured using quasi-static mechanical and modal vibration testing, yielding local and globally averaged properties, respectively. Differences between quasi-static and dynamic elastic constants are attributed to through-thickness shear effects. Regardless of the method employed, networks show signs of material inhomogeneity at high fibre densities, in agreement with X-ray nanotomography results. Strong auxetic (or negative Poisson's ratio) behaviour is observed in the through-thickness direction, which is attributed to fibre kinking induced during processing. Measured fracture energies are compared with model predictions incorporating information about in-plane fibre orientation distribution, fibre volume fraction and single fibre work of fracture. Experimental values are broadly consistent with model predictions, based on the assumption that this energy is primarily associated with plastic deformation of individual fibres within a process zone of the same order as the inter-joint spacing. © 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
Resumo:
The aim of this work is to improve bone-implant bonding. This can, potentially, be achieved through the use of an implant coating composed of fibre networks. It is hypothesised that such an implant can achieve strong peri-prosthetic bone anchorage, when seeded with human mesenchymal stem cells (hMSCs). The materials employed were 444 and 316L stainless steel fibre networks of the same fibre volume fraction. The present work confirms that hMSCs are able to proliferate and differentiate towards the osteogenic lineage when seeded onto the fibre networks. Cellular viability, proliferation and metabolic activity were assessed and the results suggest higher proliferation rates when hMSC are seeded onto the 444 networks as compared to 316L. Cell distribution was found uniform across the seeded surfaces with 444 showing a somewhat higher infiltration depth. Copyright © Materials Research Society 2013.