7 resultados para 911
em Cambridge University Engineering Department Publications Database
Resumo:
Predictive models of friction-induced vibration have proved elusive despite decades of research. There are many mechanisms that can cause brake squeal; friction coupled systems can be highly sensitive to small perturbations; and the dynamic properties of friction at the contact zone seem to be poorly understood. This paper describes experimental and theoretical work aimed at identifying the key ingredients of a predictive model. A large-scale experiment was carried out to identify squeal initiations using a pin-on-disc test rig: approximately 30,000 squeal initiations were recorded, covering a very wide range of frequencies. The theoretical model allows for completely general linear systems coupled at a single sliding point by friction: squeal is predicted using a linearised stability analysis. Results will be presented that show that almost all observed squeal events can be predicted within this model framework, but that some subsets require innovative friction modelling: predictions are highly dependent on the particular choice of friction model and its associated parameters. Copyright © 2012 by ASME.
Resumo:
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires grown from identical catalyst particles. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.