13 resultados para 837

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic-organic (IO) hybrid nano- and microcrystals are fabricated by a low-cost, environmentally friendly and easily scaled-up route. Lead(II) iodide (PbI 2) nano/microcrystals are obtained by solvothermal techniques and subsequent IO hybrid (C 12H 25NH 3) 2PbI 4 crystals are produced by intercalation of the organic moiety. The hexagonally shaped crystals obtained range in size from 20 nm to ∼7 μm. Sequential stacking of inorganic/organic layers in these IO hybrid crystals results in strong room-temperature exciton photoluminescence, wherein the excitons are confined within the inorganic sheets. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.