12 resultados para 830
em Cambridge University Engineering Department Publications Database
Resumo:
The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method that uses a stochastic gradient algorithm to find optimal actions. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
As humanoid robots become more commonplace in our society, it is important to understand the relation between humans and humanoid robots. In human face-to-face interaction, the observation of another individual performing an action facilitates the execution of a similar action, and interferes with the execution of different action. This phenomenon has been explained by the existence of shared internal representations for the execution and perception of actions, which would be automatically activated by the perception of another individual's action. In one interference experiment, null interference was reported when subjects observed a robotic arm perform the incongruent task, suggesting that this effect may be specific to interacting with other humans. This experimental paradigm, designed to investigate motor interference in human interactions, was adapted to investigate how similar the implicit perception of a humanoid robot is to a human agent. Subjects performed rhythmic arm movements while observing either a human agent or humanoid robot performing either congruent or incongruent movements. The variance of the executed movements was used as a measure of the amount of interference in the movements. Both the human and humanoid agents produced significant interference effect. These results suggest that observing the action of humanoid robot and human agent may rely on similar perceptual processes. Furthermore, the ratio of the variance in incongruent to congruent conditions varied between the human agent and humanoid robot. We speculate this ratio describes how the implicit perception of a robot is similar to that of a human, so that this paradigm could provide an objective measure of the reaction to different types of robots and be used to guide the design of humanoid robots interacting with humans. © 2004 IEEE.
Resumo:
Hybrid numerical large eddy simulation (NLES), detached eddy simulation (DES) and URANS methods are assessed on a cavity and a labyrinth seal geometry. A high sixth-order discretization scheme is used and is validated using the test case of a two-dimensional vortex. The hybrid approach adopts a new blending function. For the URANS simulations, the flow within the cavity remains steady, and the results show significant variation between models. Surprisingly, low levels of resolved turbulence are observed in the cavity for the DES simulation, and the cavity shear layer remains two dimensional. The hybrid RANS-NLES approach does not suffer from this trait.For the labyrinth seal, both the URANS and DES approaches give low levels of resolved turbulence. The zonal Hamilton-Jacobi approach on the other had given significantly more resolved content. Both DES and hybrid RANS-NLES give good agreement with the experimentally measured velocity profiles. Again, there is significant variation between the URANS models, and swirl velocities are overpredicted. © 2013 John Wiley & Sons, Ltd.