20 resultados para 802
em Cambridge University Engineering Department Publications Database
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology offer the potential for low cost deployment and maintenance compared with conventional wired sensor networks, enabling effective and efficient condition monitoring of aged civil engineering infrastructure. We will address wireless propagation for a below to above ground scenario where one of the wireless nodes is located in a below ground fire hydrant chamber to permit monitoring of the local water distribution network. Frequency Diversity (FD) is one method that can be used to combat the damaging effects of multipath fading and so improve the reliability of radio links. However, no quantitative investigation concerning the potential performance gains from the use of FD at 2.4GHz is available for the outlined scenario. In this paper, we try to answer this question by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor nodes. These measurement results are also compared with those obtained from simulations that employ our Modified 2D Finite-Difference Time-Domain (FDTD) approach. ©2009 IEEE.
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology operate primarily in the 2.4 GHz globally compatible ISM band. However, the wireless propagation channel in this crowded band is notoriously variable and unpredictable, and it has a significant impact on the coverage range and quality of the radio links between the wireless nodes. Therefore, the use of Frequency Diversity (FD) has potential to ameliorate this situation. In this paper, the possible benefits of using FD in a tunnel environment have been quantified by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor motes in the disused Aldwych underground railway tunnel. The objective of this investigation is to characterise the performance of FD in this confined environment. Cross correlation coefficients are calculated from samples of the received power on a number of frequency channels gathered during the field measurements. The low measured values of the cross correlation coefficients indicate that applying FD at 2.4 GHz will improve link performance in a WSN deployed in a tunnel. This finding closely matches results obtained by running a computational simulation of the tunnel radio propagation using a 2D Finite-Difference Time-Domain (FDTD) method. ©2009 IEEE.
Resumo:
We report a fibre-optic wireless distribution system, which allows antenna-remoting of a dual-service IEEE 802.11b/g WLAN operating at 2.4GHz up to 700m over low-bandwidth 62.5/125μm MMF using highly linear uncooled directly modulated laser diodes. © 2004 Optical Society of America.
Resumo:
An integrated EOM VCSELs is shown to offer high linearity (92dB/Hz 2/3 at 6GHz) and by extrapolation ∼90dB/Hz2/3 up to 20GHz. Successful modulation with IEEE 802.11g signals is demonstrated at 6GHz with a 12dB dynamic range. © 2011 Optical Society of America.
Resumo:
Purpose: The purpose of this paper is to explore the key influential factors and their implications on food supply chain (FSC) location decisions from a Thailand-based manufacturer's view. Design/methodology/approach: In total, 21 case studies were conducted with eight Thailand-based food manufacturers. In each case, key influential factors were observed along with their implications on upstream and downstream FSC location decisions. Data were collected through semi-structured interviews and documentations. Data reduction and data display in tables were used to help data analysis of the case studies. Findings: This exploratory research found that, in the food industry, FSC geographical dispersion pattern could be determined by four factors: perishability, value density, economic-political forces, and technological forces. Technological forces were found as an enabler for FSC geographical dispersion whereas the other three factors could be both barriers and enablers. The implications of these four influential factors drive FSC towards four key patterns of FSC geographical dispersion: local supply chain (SC), supply-proximity SC, market-proximity SC, and international SC. Additionally, the strategy of the firm was found to also be an influential factor in determining FSC geographical dispersion. Research limitations/implications: Despite conducting 21 cases, the findings in this research are based on a relatively small sample, given the large size of the industry. More case evidence from a broader range of food product market and supply items, particularly ones that have significantly different patterns of FSC geographical dispersions would have been insightful. The consideration of additional influential factors such as labour movement between developing countries, currency fluctuations and labour costs, would also enrich the framework as well as improve the quality and validity of the research findings. The different strategies employed by the case companies and their implications on FSC location decisions should also be further investigated along with cases outside Thailand, to provide a more comprehensive view of FSC geographical location decisions. Practical implications: This paper provides insights how FSC is geographically located in both supply-side and demand-side from a manufacturing firm's view. The findings can also provide SC managers and researchers a better understanding of their FSCs. Originality/value: This research bridges the existing gap in the literature, explaining the geographical dispersion of SC particularly in the food industry where the characteristics are very specific, by exploring the internationalization ability of Thailand-based FSC and generalizing the key influential factors - perishability (lead time), value density, economic-political forces, market opportunities, and technological advancements. Four key patterns of FSC internationalization emerged from the case studies. © Emerald Group Publishing Limited.
Resumo:
We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.
Resumo:
The paper considers the feedback stabilization of periodic orbits in a planar juggler. The juggler is "blind," i.e, he has no other sensing capabilities than the detection of impact times. The robustness analysis of the proposed control suggests that the arms acceleration at impact is a crucial design parameter even though it plays no role in the stability analysis. Analytical results and convergence proofs are provided for a simplified model of the juggler. The control law is then adapted to a more accurate model and validated in an experimental setup. © 2007 IEEE.