42 resultados para 7038-207
em Cambridge University Engineering Department Publications Database
Resumo:
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
Resumo:
This paper describes an approach to structuring the make or buy decision process, basing it firmly in the context of an overall manufacturing strategy. The work has been carried out jointly by the University of Cambridge Manufacturing Engineering Group and Lucas Industries. A review of the current state of ideas surrounding the linked issues of vertical integration and make or buy decisions is presented. Important features of the approach include identification of core manufacturing capabilities, assessment of the role of technology in manufacturing, the development of a cost model to support make or buy decisions and a review of the strategic implications of varying degrees of vertical integration.
Resumo:
There is a widespread recognition of the need for better information sharing and provision to improve the viability of end-of-life (EOL) product recovery operations. The emergence of automated data capture and sharing technologies such as RFID, sensors and networked databases has enhanced the ability to make product information; available to recoverers, which will help them make better decisions regarding the choice of recovery option for EOL products. However, these technologies come with a cost attached to it, and hence the question 'what is its value?' is critical. This paper presents a probabilistic approach to model product recovery decisions and extends the concept of Bayes' factor for quantifying the impact of product information on the effectiveness of these decisions. Further, we provide a quantitative examination of the factors that influence the value of product information, this value depends on three factors: (i) penalties for Type I and Type II errors of judgement regarding product quality; (ii) prevalent uncertainty regarding product quality and (iii) the strength of the information to support/contradict the belief. Furthermore, we show that information is not valuable under all circumstances and derive conditions for achieving a positive value of information. © 2010 Taylor & Francis.