3 resultados para 670899 Other non-ferrous metals (e.g. copper, zinc)
em Cambridge University Engineering Department Publications Database
Resumo:
Passive Radio Frequency Identification (RFID) has revolutionized the way in which products are identified. This paper considers the effect of metals on the performance of RFID at ultra high frequency (UHF). The paper establishes read patterns in space, highlighting the interference of RF waves due to three different metals, one ferrous and the other two non ferrous, when placed behind a transponder. The effect of thickness of the metal plate is also examined. Different metals have been found to have different interference effects although there are some similarities in their read patterns related to their material properties. Also experiments have been carried out to identify and establish various methods of improving this performance. Finally, differences between performance-measuring parameters, namely attenuating transmitted power and calculating read rate at a fixed attenuation are established and possible reasons of these observations are presented. © 2007 IEEE.
Resumo:
A technique to measure wall flow variation in Diesel Particle Filters (DPFs) is described. In a recent paper, it was shown how the flow distribution in DPFs could be measured in a non-destructive manner. This involved measuring the progressive dilution of a tracer gas introduced at the "outlet" channel upstream end. In the present paper, a significant further improvement to this technique is described, in which only a single probe is required, rather than the two of the previous technique. The single, traversable, probe consists of a controllable flow sink, and slightly downstream, a tracer gas supply. By controlling the sink flow rate such that a very small concentration of tracer gas is aspirated into it, the total flow up to that location in the channel is determined. Typical results showing the axial variation in the wall flow for known wall blockage cases are presented. It is suggested that this technique could be used to interpret the soot loading in the filter channels in a non-intrusive way.