21 resultados para 477

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous papers (S. Adhikari and J. Woodhouse 2001 Journal of Sound and Vibration 243, 43-61; 63-88; S. Adhikari and J. Woodhouse 2002 Journal of Sound and Vibration 251, 477-490) methods were proposed to obtain the coefficient matrix for a viscous damping model or a non-viscous damping model with an exponential relaxation function, from measured complex natural frequencies and modes. In all these works, it has been assumed that exact complex natural frequencies and complex modes are known. In reality, this will not be the case. The purpose of this paper is to analyze the sensitivity of the identified damping matrices to measurement errors. By using numerical and analytical studies it is shown that the proposed methods can indeed be expected to give useful results from moderately noisy data provided a correct damping model is selected for fitting. Indications are also given of what level of noise in the measured modal properties is needed to mask the true physical behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of flat panel displays, the current leading technology is the Active Matrix liquid Crystal Display; this uses a-Si:H based thin film transistors (TFTs) as the switching element in each pixel. However, under gate bias a-Si:H TFTs suffer from instability, as is evidenced by a shift in the gate threshold voltage. The shift in the gate threshold voltage is generally measured from the gate transfer characteristics, after subjecting the TFT to prolonged gate bias. However, a major drawback of this measurement method is that it cannot distinguish whether the shift is caused by the change in the midgap states in the a-Si:H channel or by charge trapping in the gate insulator. In view of this, we have developed a capacitance-voltage (C-V) method to measure the shift in threshold voltage. We employ Metal-Insulator-Semiconductor (MIS) structures to investigate the threshold voltage shift as they are simpler to fabricate than TFTs. We have investigated a large of number Metal/a-Si:H/Si3N4/Si+n structures using our C-V technique. From, the C-V data for the MIS structures, we have found that the relationship between the thermal energy and threshold voltage shift is similar to that reported by Wehrspohn et. al in a-Si:H TFTs (J Appl. Phys, 144, 87, 2000). The a-Si:H and Si3N4 layers were grown using the radio-frequency plasma-enhanced chemical vapour deposition technique.