4 resultados para 3D quantitative findings
em Cambridge University Engineering Department Publications Database
Resumo:
Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.
Resumo:
This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer. © 2011 American Society of Civil Engineers.
Resumo:
This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2012 Springer Science+Business Media, LLC.
Resumo:
A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.