54 resultados para 270.6620
em Cambridge University Engineering Department Publications Database
Resumo:
This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
This paper describes a novel hierarchical approach to timing verification. Four types of relationship existing among signal paths are distinguished, based on a classification of the degree of interdependency in the circuit. In this way, irrelevant path delays can be excluded through consideration of the interaction between critical paths and others. Furthermore, under suitable conditions, bounded delay values for large hierarchical systems can be deduced using bounded delays determined for their constituent cells. Finally, we discuss the impact on design strategy of the hierarchical delay model presented in this paper.
Tyre/road interaction noise - numerical noise prediction of a patterned tyre on a rough road surface