2 resultados para 2592

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the behavior of channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Gaussian channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies takes place, as in Spread-Spectrum and Ultra-Wideband communications. It is well known that, in this regime, a symmetric one-bit quantizer reduces capacity by 2/π, which translates to a power loss of approximately two decibels. Here we show that if an asymmetric one-bit quantizer is employed, and if asymmetric signal constellations are used, then these two decibels can be recovered in full. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided self-organization can be regarded as a paradigm proposed to understand how to guide a self-organizing system towards desirable behaviors, while maintaining its non-deterministic dynamics with emergent features. It is, however, not a trivial problem to guide the self-organizing behavior of physically embodied systems like robots, as the behavioral dynamics are results of interactions among their controller, mechanical dynamics of the body, and the environment. This paper presents a guided self-organization approach for dynamic robots based on a coupling between the system mechanical dynamics with an internal control structure known as the attractor selection mechanism. The mechanism enables the robot to gracefully shift between random and deterministic behaviors, represented by a number of attractors, depending on internally generated stochastic perturbation and sensory input. The robot used in this paper is a simulated curved beam hopping robot: a system with a variety of mechanical dynamics which depends on its actuation frequencies. Despite the simplicity of the approach, it will be shown how the approach regulates the probability of the robot to reach a goal through the interplay among the sensory input, the level of inherent stochastic perturbation, i.e., noise, and the mechanical dynamics. © 2014 by the authors; licensee MDPI, Basel, Switzerland.