24 resultados para 250103 Colloid and Surface Chemistry

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of SrBi2Ta2O9 and related oxides such as SrBi2Nb2O9, Bi2WO6 and Bi3Ti4O12 have been calculated by the tight-binding method. In each case, the band gap is about 4.1 eV and the band edge states occur on the Bi-O layers and consist of mixed O p/Bi s states at the top of the valence band and Bi p states at the bottom of the conduction band. The main difference between the compounds is that Nb 5d and Ti 4d states in the Nb and Ti compounds lie lower than the Ta 6d states in the conduction band. The surface pinning levels are found to pin Schottky barriers 0.8 eV below the conduction band edge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface coatings and treatments have been used to reduce material loss of components in bubbling fluidized bed combustors (FBCs). The performance of protective coatings in FBC boilers and laboratory simulations is reviewed. Important coating properties to minimize wastage appear to be high hardness, low oxidation rate, low porosity, high adhesion and sufficient thickness to maintain protection for a long period. Economic considerations and criteria for choosing a suitable coating or treatment are discussed for the different types of bubbling FBC. © 1995.