10 resultados para 201-1230C
em Cambridge University Engineering Department Publications Database
Resumo:
In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.
Resumo:
A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).