4 resultados para 1180

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method proposed in the second report using Townsend's "simple model eddies" for DNS was extended to generate axisymmetric anisotropic turbulence. A force field is obtained in real space by sprinkling many space-filling "simple model eddies" whose centers are randomly but uniformly distributed in space. The axes of rotation are controlled in this study to generate axisymmetric anisotropic turbulence. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects for anisotropic turbulence are investigated. The results show that stationary axisymmetric anisotropic turbulence is generated using the present method. Turbulence intensities near the wall showed good agreements with the rapid distortion theory (RDT) for small t (t ≪ TL), where TL. is the eddy turnover time. The splat effect (i. e. turbulence intensities of the components parallel to the surface are amplified) occurs near the boundary and the viscous effect attenuates the splat effect at the quasi steady state at low Reynolds number as for Isotropic turbulence. Prandtl's secondary flow of the second kind does not occur for low Reynolds number flows, which qualitatively agrees with previous observetion in a mixing-box.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tribometer, based on a pin-on-disc machine, uses a PZT drive to produce small sinusoidal fluctuations of sliding speed. The frequency and amplitude of these fluctuations can be controlled, and the dynamic response measured. Preliminary test results show that the dynamic friction variation is influenced by the contact materials, normal force, oscillation frequency and steady sliding speed. The variation of friction force amplitude and phase with frequency gives clues about the underlying state variables determining the friction. Modelling studies illustrate the expected behaviour for idealized friction laws governed by, for example, sliding speed, contact temperature, and "rate-state" laws. © 2008 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied to the burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) a prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model, in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally, good agreement in the results of the calculations obtained using different methods and codes was observed.