4 resultados para 11.5BC46-2

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a theoretical and experimental analysis of a biologically inspired balloon-type pneumatic microactuator. The operation principle of pneumatic balloon actuators (PBA's) is based on an asymmetric deflection of two PDMS layers with different thicknesses or different Young's moduli that are bonded together. A new analytical 2D model that describes the complex behavior of these actuators is presented and validated using both 3D FEM models and measurements. The actuators have dimensions ranging from 11 mm × 2 mm × 0.24 mm to 4 mm × 1 mm × 0.12 mm. Their fabrication is based on micromolding of PDMS, and can therefore easily be fabricated in high throughput. Measurements showed that the analytical model provides a qualitative description of the actuator behavior, and showed that the larger actuators are capable of delivering a 7 mm stroke at a supply pressure of 70 kPa and a force of max 22 mN at a supply pressure of 105 kPa. © 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.